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Abstract

A high-order accurate, finite-difference method for the numerical solution of the incompressible Navier–Stokes equa-
tions is presented. Fourth-order accurate discretizations of the convective and viscous fluxes are obtained on staggered
meshes using explicit or compact finite-difference formulas. High-order accuracy in time is obtained by marching the solu-
tion with Runge–Kutta methods. The incompressibility constraint is enforced for each Runge–Kutta stage iteratively
either by local pressure correction or by a Poisson-equation based global pressure correction method. Local pressure cor-
rection is carried out on cell by cell basis using a local, fourth-order accurate discrete analog of the continuity equation.
The global pressure correction is based on the numerical solution of a Poisson-type equation which is discretized to fourth-
order accuracy, and solved using GMRES. In both cases, the updated pressure is used to recompute the velocities in order
to satisfy the incompressibility constraint to fourth-order accuracy. The accuracy and efficiency of the proposed method is
demonstrated in test problems.
� 2005 Elsevier Inc. All rights reserved.
1. Introduction

In many industrial applications, such as flows over hydrofoils, wind-turbine blades, and aircraft wings dur-
ing takeoff and landing the performance is affected by separated flow occurring at low speeds M1 < 0.1. For
these applications, the flow is practically incompressible. Incompressible flow is also encountered in biomed-
ical and biomechanical applications, such as blood flow, bird and insect flight. Furthermore, the development
of affordable, high-speed trains and naval transportation with potential to commercial applications needs
detail flowfield information because the harsh environment of such endeavors imposes high structural, and
propulsive loads. The difficulty of full-scale testing constrains efforts to evolve new concepts and requires
application of advanced, efficient, and accurate methods for the numerical solution of the incompressible flow
equations.
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The primary problem with time-accurate solutions of the incompressible flow equations is the difficulty in
coupling changes of the velocity field with changes of the pressure field while satisfying the continuity equa-
tion. The continuity equation of the incompressible flow equations has a non-evolutionary character because
the pressure is included in a non-time-dependent form. Use of the alternative stream-function-velocity and
vorticity–velocity formulations [36] are not straight forward in three dimensions. Numerical solutions of
the incompressible flow equations are traditionally obtained either with pressure correction methods [11,13]
or with fractional time-step methods [5,18,31,16]. Fractional time-step methods are often combined with a
Poisson-type equation for pressure correction. Operator splitting and predictor–corrector methods that decou-
ple the computation of velocity and pressure [14] are also used.

The Poisson equation utilized for pressure correction is obtained from the momentum equations, and yields
the pressure field distribution in terms of the velocities. Pressure correction with Poisson equation is achieved
by advancing the velocity field in time solving numerically the momentum equations, and subsequently solving
the Poisson equation for pressure at the current time step so that continuity is enforced in the next time step.
As a result, pressure correction using Poisson equation couples velocity and pressure indirectly. The fractional
time-step method introduced by Chorin [5], on the other hand, first solves for an intermediate velocity field
from the momentum equations and then obtains the pressure field that will map the intermediate velocity field
to a divergence free velocity field. The operator-splitting method introduced by Issa [14], computes the pres-
sure with a suitable Poisson equation at each time step. The SIMPLE method [27] also uses a Poisson-type
equation to enforce incompressibility. This method was applied for curvilinear coordinates in the finite volume
context in Ref. [28].

The artificial compressibility or pseudocompressibility method is often used as an alternative to the previ-
ous methods. This method was initially introduced by Chorin [4] for the solution of steady-state incompress-
ible flows, and it was subsequently extended by Merkle and Athavale [23] to time-accurate incompressible flow
solutions. Numerical solutions of complex, time-dependent flows were performed using the artificial compress-
ibility method [30,6]. The main disadvantage of the above procedure, however, is that the numerical diffusion
required to stabilize the numerical solution is rather high.

It has long been recognized that improved aerodynamic design requires detailed information of the near
wall flowfield. For example, although the high drag caused by turbulent flow has significant impact on the
operational cost of vehicles, mechanisms of receptivity and nonlinear growth of instabilities, which under var-
ious noise environments lead complex flows to transition and turbulence, are poorly understood. Even less
understood is the impact of recently developed conventional and unconventional flow control techniques
on performance and operational cost. Typical second-order accurate in space methods employed in computa-
tional fluid dynamics (CFD) algorithms of incompressible flow [11,8,13,29] require a large number of grid
points to resolve the nonlinear growth of instability waves and fine turbulent structures. Furthermore,
high-order upwind methods often introduce spurious (numerical) disturbances, which may contaminate the
solution beyond acceptable limits, can lead to significant damping of turbulence fluctuations, and can mask
the effects of the subgrid-scale (SGS) models used in large eddy simulations (LES). Spectral methods typically
employed to overcome these problems are difficult if not impossible to use for complex configurations or even
on canonical configurations with flow unsteadiness caused by wall motion. Robust, high fidelity, and accuracy
methodologies are therefore required. In recent years, there has been an increased interest in developing meth-
ods based on high-order expansions of the discrete solution [3,17].

In parallel, more efficient computationally yet accurate finite-difference and finite-volume methods on stag-
gered grids have been pursued for the numerical solution of incompressible flow equations [24,34,10,22]. A
detailed analysis of several space discretization methods on regular or staggered meshes for different formu-
lations of the incompressible flow equations was carried out by Morinishi et al. in [24]. The divergence, advec-
tive, skew-symmetric and rotational forms of the convective terms are considered in order to study the
conservation properties of the resulting discrete formulations. It was concluded that momentum and kinetic
energy are conserved at the discrete level only by certain high-order accurate spacial discretizations. The con-
servation properties of finite-difference methods for staggered grids were further investigated for non-uniform
meshes in [34,10]. In [34], the schemes analyzed in [24] were extended to non-uniform meshes. It was concluded
that on non-uniform meshes these schemes do not simultaneously conserve momentum and kinetic energy and
the cause of the problem was identified. A second-order accurate scheme on non-uniform meshes was pro-
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posed in [10], which simultaneously conserves momentum and kinetic energy. More recently, the conservative
staggered grid approach was extended in the finite-volume context by Mahesh et al. in [22].

The present paper focuses on addressing the crucial issues of high-order accuracy and efficiency by develop-
ing, evaluating, and demonstrating a new high-order time–space algorithm for incompressible flow. This
algorithm is based on novel, high-order accurate in space and time discretizations. High-order explicit finite-
difference formulas or compact schemes, applied on a staggered-grid, are used to discretize the convective
and viscous fluxes in the momentum equations. In the present paper, the divergence form of the convective
terms is considered. The energy conservation properties of the explicit, fourth-order accurate finite-difference
method incorporated in the proposed algorithm, have been analyzed by Morinishi et al. in [24]. The high-order
accurate compact schemes employed as alternative to explicit finite differences, are based on the formulas given
by Gaitonde and Visbal in [7] and analyzed in [12,19,21]. The conservation properties of compact schemes have
been studied in the context of compressible flows [25,19]. The momentum equations are advanced in time using
the explicit, fourth-order Runge–Kutta method. In the proposed algorithm, incompressibility is enforced using
two different approaches, a local pressure correction technique analogous to that used in [13], or a global,
Poisson-equation based pressure correction method. In both cases, fourth-order accurate space discretizations
are used.

The rest of this paper is organized as follows: The governing equations are shown first. The staggered grid
methodology is presented and the high-order discretization procedure is explained. The time marching scheme
is defined. The two different approaches proposed for pressure update and incompressibility enforcement to
high order are presented. Finally, in the results section the accuracy of the method is demonstrated.

2. Governing equations

For incompressible flow, and without loss of generality the high-order accurate method on staggered grids
can be presented for the two-dimensional governing equations. The incompressible Navier–Stokes equations
in Cartesian or cylindrical (x, y) coordinates can be expressed as
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ox
þ ov

oy
þ n

r
u ¼ 0; ð1Þ

ou

ot
þ oF

ox
þ oG

oy
þ n

r
S ¼ �rp þ 1

Re
oFv

ox
þ oGv

oy
þ n

r
Sv

� �
; ð2Þ
where n = 0 for Cartesian coordinates while n = 1 and r = x is the radial direction for cylindrical coordinates.
In (1), (2), u = [u, v]T is the velocity vector and p is the pressure, F and G are the inviscid flux vectors, Re is the
Reynolds number, Re = UL/m, where U is a characteristic velocity and L a characteristic length, and Fv, and
Gv are the viscous fluxes. The inviscid fluxes are given by
F ¼ ½u2; uv�T; G ¼ ½vu; v2�T;

and the viscous flux terms are
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The additional source terms S and Sv appearing for cylindrical coordinates are S = F and
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3. Numerical method

A second-order accurate method [13] was proposed for the numerical solution of incompressible flows on
staggered grids with finite-difference discretizations for the convective and diffusive fluxes. The forward Euler
method is used to advance in time the discrete equations. For stabilization, the donor cell, first-order upwind
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scheme [8], is applied to the convective terms. The velocity field is computed using the momentum equations.
Divergence free condition of the computed velocity field at a new time level is enforced iteratively by employ-
ing pressure correction. This correction is computed locally on each cell, instead of solving a global Poisson
equation to determine simultaneously corrections for all cells. Once the pressure is corrected on each cell, the
velocities are recomputed from the momentum equations. All cells are swept successively in a preselected
order. After the velocities for one cell are adjusted, velocities of the adjacent cells are inevitably affected via
the common nodes. An iterative process is then established for pressure corrections until all local divergences
become zero within some tolerance.

In this paper, starting from the basic staggered grid discretization and pressure correction procedure of [13],
higher accuracy in space and time is obtained. Fourth-order accuracy in space is obtained using explicit or
compact centered schemes. Incompressibility is enforced using two different approaches, both based on the
basic procedure of [13], that iteratively compute pressure corrections which introduced to the discrete momen-
tum equations, produce perturbed velocities converging to a divergence-free limit. For the first approach a
local, cell-based pressure correction is introduced to the momentum equations (2), and computed subsequently
so that the perturbed velocities satisfy zero continuity via (1). For the second approach, globally defined,
simultaneously on all cells, pressure corrections are introduced in (2) and computed subsequently via a Pois-
son-type equation occurring under the requirement that the perturbed velocities satisfy (1). In order to ensure
high-order spatial accuracy, the derivatives in (1) or in the associated Poisson-type equation will be discretized
to fourth-order accuracy using explicit formulas. The first-order, donor-cell upwind is maintained in the code.
However, the computations in this paper were performed without upwinding. For time-stepping, the explicit
fourth-order Runge–Kutta method [2] is used.

3.1. Computational grid

Rectangular physical domains in cartesian or cylindrical1 coordinates are subdivided into rectangular cells
Ci,j. These cells have width Dx and height Dy and vertices defined by the points xi = iDx, i = 0, . . . , I, and
yj = jDy, j = 0, . . . , J, on the x- and y-axes, respectively. Midpoints on the vertical and horizontal edges,
and the centers of the cells are defined by the associated midpoints on the axis denoted by xi�1/2 = (i � 1/
2)Dx and yj�1/2 = (j � 1/2)Dy. An exterior fictitious layer of three cells, adjacent on each side of the physical
domain is added to facilitate the imposition of fourth-order accurate numerical boundary conditions. The
additional points that are used to define the cells in the fictitious layer are numbered with i = �3, �2, �1
on the left and i = I + 1, I + 2, I + 3 on the right on the x-axis, and with j = �3, �2, �1 at the bottom and
j = J + 1, J + 2, J + 3 at the top on the y-axis. The physical domain in unison with the fictitious layer form
the computational domain.

The staggered grid is shown in Fig. 1. The dependent variables are discretized at the following locations on
the cell Ci,j: the pressure p denoted by pi,j at the cell center with coordinates (xi�1/2, yj�1/2); the u velocity com-
ponent denoted by ui+1/2,j at the vertical edges midpoints with coordinates (xi, yj�1/2); and the v velocity com-
ponent denoted by vi,j+1/2 at the horizontal edges midpoints with coordinates (xi�1/2, yj).

3.2. High-order discretization in space

The staggered grid discretization requires that the u-momentum and the v-momentum equations (2) are dis-
cretized at the midpoints of the vertical and horizontal edges of the cells, respectively. The continuity equation
(1) is discretized at the cell centers. Approximations for the first-order derivatives in the convective flux and
source terms, and the second-order derivatives in the viscous flux terms are performed at appropriate locations
on the staggered grid. Finite-difference, explicit or compact schemes are employed for the discretization of the
derivatives at midpoints xi�1/2 (or yj�1/2) by using functional values of the variable at integer points xi (or yj).
The staggered grid implementation of the explicit and compact, fourth-order finite-difference schemes is
summarized in the following section.
1 In cylindrical coordinates the radial direction coincides with the x-axis.
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Fig. 1. Schematic of staggered grid.
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3.2.1. Explicit fourth-order finite differences

The fourth-order accurate, first-order derivatives at midpoints xi�1/2, using standard collocated formulas,
are evaluated as
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and using functional values at integer points xi as
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The fourth-order accurate, second-order derivatives with standard collocated formulas are evaluated as
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Functional values at midpoints are computed as fourth-order averages of functional values of integer points
by
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Discretization of the nonlinear terms appearing in the convective fluxes is then obtained as follows:
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Functional values of the products u2 and uv appearing in the above expressions are computed by
ðu2Þi;j �
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The diffusive fluxes (o2u/ox2)i+1/2,j and (o2u/oy2)i+1/2,j are discretized using (5) at i + 1/2 (for all j) and at j (for
all i + 1/2), respectively. For the source term appearing in cylindrical coordinates, application of (4) yields
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while (u2/r)i+1/2,j = (u2)i+1/2,j/ri and (u2)i+1/2,j is computed as in (9).
In the resulting semidiscrete momentum equations a first-order upwind term, obtained by the upstream,

donor-cell differencing scheme of [8], can be introduced. Upwinding may be used in certain cases where numer-
ical stability should be enforced. However, the numerical simulations presented in the subsequent sections
were performed without upwinding.

Using the same notation as in Morinishi et al. [24] the staggered grid fourth-order accurate finite-difference
formula (4) can be written as
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and the staggered grid fourth-order accurate average (6) can be written as
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The discretization of the nonlinear convective terms in the momentum equations suggested by (8)–(10), can
be written according to (11) and (12), with x1 = x, x2 = y, u1 = u, and u2 = v, as
D4
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which is analogous to Eq. (98) of Ref. [24]. Due to divergence form of (2), momentum is conserved by (13). At
the discrete level, however, momentum is conserved within the discrete error in continuity. This error is negligible
because, as is shown in the following sections, pressure is corrected up to fourth-order of accuracy and continuity
is satisfied to machine accuracy (10�15 at least). However, Eq. (13) yields a conservation error for the kinetic
energy as is pointed out in [24]. The discrete formula (13) can be substituted (see Eq. (101) of [24]) by
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to achieve better conservation for the kinetic energy at the discrete level.
The associated pressure discretization also conserves momentum and kinetic energy at the discrete level

within the discrete error in continuity, introduced by the pressure correction.

3.2.2. Compact fourth-order schemes

Fourth-order accuracy can also be obtained for the first and second derivatives, by using compact, Padé-
type finite-difference schemes [7,12]. Compact schemes evaluate the derivatives in a coupled fashion by per-
forming tridiagonal matrix inversions. Compact schemes have improved resolution in wavespace [19,21] in
the sense that when applied to problems with a wide range of spatial scales they provide better representation
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of the shorter length scales, compared with the wider stensil, but more efficient computationally explicit, finite-
difference schemes of the same order. The conservation properties of compact schemes have been studied
[25,19] in the context of compressible flows. Compact schemes which are suitably modified for the near bound-
ary nodes satisfy a discrete type of energy conservation when applied to the conservative form of the governing
equations [19]. Numerical experiments demonstrated (see Section 6) that using compact schemes for space dis-
cretization in the proposed algorithm also preserve energy for incompressible flows.

The first-order derivatives at integer points xi are computed in a coupled fashion using functional values at
integer points, by the simultaneous solution of the following system of linear equations:
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For a = 1/4, a = 3/2 and b = 0 the fourth-order accurate three-point stencil, compact scheme that requires the
solution of a tridiagonal linear system is obtained.

In (15), the following boundary closures are used:
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The first-order derivatives at integer points are computed using functional values at midpoints by solving
the following linear system:
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Here a = (9 � 6a)/8 and b = (�1 + 22a)/8. For a = 1/22, b = 0 and a three-point stencil is obtained.
In (16), the following boundary closures are used:
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The required functional values at midpoints are obtained by compact interpolation of functional values at
integer points as follows:
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where a = (9 + 10a)/8 and b = (�1 + 6a)/8. For a = 1/6, b = 0 and a three-point stencil is obtained.
In (17), the following boundary closures are used:
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The convective fluxes F and G in (1)–(2) are discretized on the staggered grid using (15)–(17) compact
schemes. Discretization of the second-order derivatives in the viscous fluxes Fv and Gv on staggered grids
requires special treatment. Successive application of (15) leads to numerical instabilities [7]. Fourth-order com-
pact schemes for the second derivative [19], on the other hand, require pentadiagonal matrix inversion. Here
the second-order derivatives are computed with successive application of (16). Numerical experiments demon-
strate that this approach is stable.

4. Time marching

The semidiscrete, i.e. the continuous in time momentum equations resulting from (2) after space discreti-
zation is applied, are written in compact form as follows:
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dUðtÞ
dt
¼ RðU; P ; tÞ; ð18Þ
where R(U, P; t) = �$P + A(U; t). The derivatives (oxP)i+1/2,j and (oyP)i,j+1/2, appearing in the pressure gra-
dient $P, are evaluated to fourth-order accuracy using (4). The term A = (Au, Av), with Au(U; t) and Av(U; t),
denotes the space discretization of the remaining terms in (2).

A q-stage Runge–Kutta method is defined by a set of q(q + 2) parameters, given as the entries of a matrix
A = (aij)2Rq·q, and two vectors b = (b1, . . . , bq)T 2 Rq, s = (s1, . . . , sq)T 2 Rq. The application of these meth-
ods to the numerical solution of ordinary differential equations has been extensively studied, [2]. Using the
semidiscrete approach or method of lines, time marching is obtained by solving a system of ordinary differ-
ential equations given by (18). The four-stages explicit Runge–Kutta method is obtained with a21 = a32 =
1/2 and a43 = 1, and aij = 0, b1 = b4 = 1/6, b2 = b3 = 1/3, s1 = 0, s2 = s3 = 1/2, and s4 = 1 as follows:
Un;1 ¼ Un; P n;1 ¼ P n; ð19Þ

Un;2 ¼ Un þ Dt
2

Rn;1; ð20Þ

Un;3 ¼ Un þ Dt
2

Rn;2; ð21Þ

Un;4 ¼ Un þ DtRn;3; ð22Þ

Unþ1 ¼ Un þ Dt
6
ðRn;1 þ 2Rn;2 þ 2Rn;3 þ Rn;4Þ; ð23Þ
where tn = nDt, tn,1 = tn, tn,2 = tn,3 = tn + Dt/2, tn,4 = tn + Dt, and Rn,‘ = R(Un,‘, Pn,‘; tn,‘) for ‘ = 2, 3, 4.
The quantities Pn,‘, ‘ = 2, 3, 4, and Pn+1, appearing in (19)–(23), are determined by enforcing the incom-

pressibility on the velocity vectors Un,‘, ‘ = 2, 3, 4, and Un+1. Incompressibility is enforced on the velocity vec-
tors Un,‘, ‘ = 2, 3, 4, and Un+1 by the pressure update procedures described in the next section.

The fully explicit time-marching scheme was chosen because implementation of semi-implicit schemes in 3D
is computationally intensive. In addition, CFL stability limitations of explicit methods can be alleviated with
multigrid acceleration techniques.

5. Incompressibility condition

The velocities vectors Un,‘, ‘ = 2, 3, 4, and Un+1 obtained from (20)–(23) do not necessarily satisfy the
incompressibility constraint of (1). Incompressibility is enforced to the computed velocity field at each time
step and during the intermediate stages iteratively through pressure updates. Pressure updates are obtained
with two approaches. The first approach applies pressure corrections locally on each cell by sweeping them
in a predefined order and recomputing the velocities on each cell. The second approach computes pressures
corrections for all cells simultaneously by solving a discrete Poisson-type equation globally and subsequently
recomputing the velocities for all cells simultaneously. Both procedures must be applied iteratively after the
pressure update is completed because the corrected velocities on adjacent cells are correlated via common stag-
gered grid points and their values violate incompressibility locally. Therefore, iterations of pressure updates
are carried out within each time step, until the divergence of the velocity field becomes smaller than a given
machine tolerance. The spatial derivatives appearing in the continuity equation during the pressure update
procedures, are computed using fourth-order accurate formulas.

A single iteration of the local pressure correction method is simpler to apply and computationally less
demanding than the correction through the numerical solution of the Poisson equation, which is a global pres-
sure correction method. For low Reynolds number flows the number of iterations required per time step by the
Poisson-equation global pressure correction is slightly less than that for the local pressure correction. As a
result, the local pressure correction method appears more attractive regarding the total computational time
required. However, the advantage offered by the local pressure correction method per iteration does not char-
acterizes the method as the most effective for all flow situations. Numerical experiments showed that by
increasing the Reynolds number, the iterations required by the local pressure correction method per time
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stage/step of the Runge–Kutta, time marching method, progressively increases compared to those required by
the Poisson-equation global pressure correction method. Therefore, for high Reynolds number flows, the Pois-
son-equation global pressure correction method appears to become a more effective. Further comments on the
efficiency of both methods can be found in the numerical results section.

5.1. Local pressure correction method

In this subsection, the local pressure correction procedure is described. This procedure is actually a high-
order analog of the pressure correction technique used in [13]. The updated velocity vectors Un,‘, ‘ = 2, 3, 4,
resulting after pressure updates during the intermediate Runge–Kutta stages and the velocity vector Un+1 of
the next time step, then satisfy the incompressibility condition to fourth-order accuracy.

For the first stage, no correction is required because Un is the approximate solution of the previous time
step that already satisfies the incompressibility condition. For stages ‘ = 2, 3, 4, the incompressibility
constrain is enforced as follows:

5.1.1. Correction for the ‘th intermediate update

Let Un;‘
old be the discrete, intermediate velocity vector obtained from the ‘th stage of (19)–(22), and let

P n;‘
old ¼ P n;‘�1 be the current pressure distribution. The corrected pressure for the cell Ci,j, with 1 6 i 6 I,

1 6 j 6 J, is
ðpnewÞ
n;‘
i;j ¼ ðpoldÞ

n;‘
i;j þ Dp; ð24Þ
with Dp to be determined. The update of the velocity vector U, resulting from this pressure correction is
Un;‘
new ¼ Un þ a‘;‘�1DteRn;‘�1

; ð25Þ

where eRn;‘�1

¼ RðUn;‘�1; P n;‘
new; tn;‘�1Þ. Eq. (25) in combination with (24) implies that the only components of

Un;‘
new different from those of Un;‘

old are the following:
ðunewÞn;‘i�1=2;j ¼ ðuoldÞn;‘i�1=2;j � a‘;‘�1Dt
27Dp
24Dx

; ð26Þ

ðunewÞn;‘i�3=2;j ¼ ðuoldÞn;‘i�3=2;j � a‘;‘�1Dt
Dp

24Dx
; ð27Þ

ðvnewÞn;‘i;j�1=2 ¼ ðvoldÞn;‘i;j�1=2 � a‘;‘�1Dt
27Dp
24Dy

; ð28Þ

ðvnewÞn;‘i;j�3=2 ¼ ðvoldÞn;‘i;j�3=2 � a‘;‘�1Dt
Dp

24Dy
. ð29Þ
The discrete, fourth-order accurate divergence, Di,j, of the velocity vector U for the cell Ci,j, obtained by
applying (4) and (6) to the left–hand side of (1), is
Di;j ¼
�uiþ3

2;j
þ 27uiþ1

2;j
� 27ui�1

2;j
þ ui�3

2;j

24Dx
þ
�vi;jþ3

2
þ 27vi;jþ1

2
� 27vi;j�1

2
þ vi;j�3

2

24Dy

þ n
ri�1

2

 !
�uiþ3

2;j
þ 9uiþ1

2;j
þ 9ui�1

2;j
� ui�3

2;j

16
. ð30Þ
The pressure correction Dp is determined by setting the discrete divergence of Eq. (30) equal to zero using the
updated values Un;‘

new of (26)–(29). The zero divergence condition ðDnewÞn;‘i;j ¼ 0, with (26)–(29) yields !

ðDoldÞn;‘i;j þ

365

144

1

ðDxÞ2
þ 1

ðDyÞ2
a‘;‘�1DtDp ¼ 0;
and the resulting pressure correction is
Dp ¼ �
144ðDoldÞn;‘i;j

365 1
ðDxÞ2 þ

1
ðDyÞ2

� �
a‘;‘�1Dt

. ð31Þ
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The pressure correction given by (31) is used in (26)–(29) (or equivalently in (25)) to determine Un;‘
new.

This procedure corrects the approximate intermediate velocity vector Un;‘
old to a new velocity vector Un;‘

new

which satisfies the discrete incompressibility condition (30) in the Ci,j cell. However, the common points of
the staggered grid cause violation of the incompressibility condition in the adjacent cells Ci�2,j, Ci�1,j,
Ci+1,j, Ci,j�2, Ci,j�1 and Ci,j+1. As a result, in order to enforce global incompressibility the above procedure
should be repeated for the pressure updates. The pressure correction procedure performs a complete sweep
of all cells. This sweep can be performed row by row from left to right. Initially, Un;‘

new is corrected using
(26)–(29) for each cell, then Un;‘

old ¼ Un;‘
new, P n;‘

old ¼ P n;‘
new are substituted before proceeding to the next cell. Appli-

cation of the full pressure correction procedure sweep is repeated until the discrete divergence ðDoldÞn;‘i;j
approaches zero for all cells simultaneously within some preset tolerance. The velocity vector and the pressure
are updated as Un;‘ ¼ Un;‘

new and P n;‘ ¼ P n;‘
new, once the discrete divergence-free condition (30) is globally satisfied.

After global discrete incompressibility is reached iteratively the solution proceeds to the next stage of the
Runge–Kutta method.

5.1.2. Correction for the n + 1 update

For the last stage (23), the Runge–Kutta method obtains the velocity vector for the next time level by
Unþ1
old ¼ Un þ Dt

X4

‘¼1

b‘ð�rP n;‘ þ An;‘Þ;
where P nþ1
old ¼

P4
‘¼1b‘P n;‘. In addition, for the cell Ci,j let
ðpnewÞ
nþ1
i;j ¼ ðpoldÞ

nþ1
i;j þ Dp;
and set
Unþ1
new ¼ Un þ Dt �rP nþ1

new þ
X4

‘¼1

b‘A
n;‘

 !
.

The components of Unþ1
old and Unþ1

new velocity vectors are related by a set of equations analogous to (26)–(29),
only the superscripts n, ‘ � 1 should be replaced by n + 1, and a‘,‘�1 by one. Setting the discrete divergence
(cf. (30)) of Unþ1

new equal to zero, i.e. Dnþ1
new ¼ 0, obtain
Dp ¼ �
144ðDoldÞni;j

365 1
ðDxÞ2 þ

1
ðDyÞ2

� �
Dt

.

An iteration analogous to that used for the intermediate stages is applied to impose the divergence-free con-
straint to the discrete velocity vector at time step n + 1, Un+1.

5.2. Poisson equation pressure correction method

In this section a procedure to enforce incompressibility iteratively by solving a global Poisson-type equation
to compute pressure updates is presented. This discrete Poisson-type equation results by first applying a
fourth-order accurate stencil to discretize the pressure gradient in (2) which is then substituted in the
fourth-order accurate discrete divergence given by (30). Two different approaches may be used for the deriva-
tion of the discrete Poisson-type equation. The resulting stencils have different width. Discrete velocities at the
intermediate stages and the current time step are then updated to satisfy the incompressibility condition up to
fourth-order accuracy.
5.2.1. Wide stencil, fourth-order accurate Poisson update

The first approach for global pressure correction initiates by discretizing the momentum equations (2) with
fourth-order accurate stencils. Then considering a pressure correction along with a fourth-order accurate
approximation of the continuity equation arrive to a discrete Poisson-type equation for the pressure correc-
tion. As a result, a wide, fourth-order accurate stencil is obtained.



N.A. Kampanis, J.A. Ekaterinaris / Journal of Computational Physics 215 (2006) 589–613 599
The approximate velocity at the first stage satisfies the incompressibility condition. For an intermediate
stage ‘, let Un;‘

old denote the discrete intermediate velocity vector obtained from the ‘th stage of (19)–(22),
and set P n;‘

old ¼ P n;‘�1. A modified pressure P n;‘
new is defined as follows:
P n;‘
new ¼ P n;‘

old þ DP ;
and the velocity correction as in (25) defines a new velocity vector Un;‘
new that satisfies for i = 1, . . . , I,

j = 1, . . . , J,
ðunewÞn;‘iþ1=2;j ¼ ðuoldÞn;‘iþ1=2;j � a‘;‘�1DtðoxDP Þiþ1=2;j; ð32Þ
ðvnewÞn;‘i;jþ1=2 ¼ ðvoldÞn;‘i;jþ1=2 � a‘;‘�1DtðoyDPÞi;jþ1=2. ð33Þ
Here (oxDP)i+1/2,j and (oyDP)i,j+1/2 approximate the components of the gradient of the pressure correction DP

on the staggered grid. These approximations are obtained using the fourth-order accurate formula (4). Setting
the discrete divergence equal to zero, Dn;‘

new ¼ 0, and using (32), (33) obtain for i = 1, . . . , I, j = 1, . . . , J,
�ðoxDP Þiþ3
2;j
þ 27 ðoxDP Þiþ1

2;j
� ðoxDP Þi�1

2;j

h i
þ ðoxDPÞi�3

2;j

24Dx

þ
�ðoyDPÞi;jþ3

2
þ 27 ðoyDP Þi;jþ1

2
� ðoyDPÞi;j�1

2

h i
þ ðoyDP Þi;j�3

2

24Dy

þ n
ri�1

2

 !�ðoxDP Þiþ3
2;j
þ 9 ðoxDP Þiþ1

2;j
þ ðoxDPÞi�1

2;j

h i
� ðoxDP Þi�3

2;j

16

¼ 1

a‘;‘�1Dt
ðDoldÞn;‘i;j .
Evaluation of the derivatives using (4) yields the following linear system that represents a discrete Poisson-type
equation for the evaluation of pressure correction DP:
o2
x þ o2

y þ
n

ri�1
2

dx

 !
Dpi;j ¼

ðDoldÞn;‘i;j

a‘;‘�1Dt
. ð34Þ
Here o
2
xDpi;j and o

2
yDpi;j represent approximations of the second-order derivatives. These derivatives are eval-

uated from the following formula:
d2f
dx2

� �
i

� fiþ3 � 54f iþ2 þ 783f iþ1 � 1460f i þ 783f i�1 � 54f i�2 þ fi�3

576ðDxÞ2
. ð35Þ
As a result, the left-hand-side stencil in (34) involves thirteen points, the pressure point plus six points in each
direction. Taylor series analysis shows that (35) is a fourth-order accurate, collocated approximation of the
second-derivative. Similarly, dxDpi,j represents an approximation of the first-order derivative that appears
in cylindrical coordinates. The derivative is evaluated from the following formula:
df
dx

� �
i

� fiþ3 � 36f iþ2 þ 261f iþ1 � 261f i�1 þ 36f i�2 � fi�3

384Dx
. ð36Þ
Taylor series analysis shows again that (36) is a fourth-order accurate, collocated approximation of the first-
order derivative.

Similarly to the pressure correction method of Section 5.1, an analogous iteration for the Poisson-type
equation defining the pressure updates is established in order to enforce global incompressibility. The update
of the velocity vector Un;‘

new, computed by (32) and (33) using the pressure correction DPn,‘, again violates local
incompressibility. Therefore, after Un;‘

new is computed, the velocity vector and the pressure are updated as
Un;‘

old ¼ Un;‘
new and P n;‘

old ¼ P n;‘
new, and the iteration is repeated until ðDoldÞn;‘i;j approaches zero for all cells simulta-

neously within some preset tolerance. The imposition of the incompressibility condition to Un+1 is
straightforward.



600 N.A. Kampanis, J.A. Ekaterinaris / Journal of Computational Physics 215 (2006) 589–613
5.2.2. Boundary conditions

The finite-difference scheme resulting from (34) using (35) and (36), represents a fourth-order accurate
finite-difference approximation of a Poisson-type equation. Appropriate boundary conditions for DP on the
boundary of the physical domain are needed to define properly a solution of (34). The boundary conditions
for the pressure correction DP and pressure are directly associated. For a Dirichlet boundary condition,
p = const, therefore DP = 0. For example if the pressure is constant along the left (vertical) boundary, set
(Dp)3+1/2,j = 0, for j = 1, . . . , J, and obtain the pressure corrections at the cell centers as follows:
ðDpÞ6;j ¼ �ðDpÞ1;j; ðDpÞ5;j ¼ �ðDpÞ2;j; ðDpÞ4;j ¼ �ðDpÞ3;j. ð37Þ
The pressure correction DPp of the previous iteration is assumed to satisfy (37). Therefore the appropriate
components of the pressure correction DPc of the current iteration, are defined as follows:
ðDpcÞ6;j ¼ �ðDppÞ6;j; ðDpcÞ5;j ¼ �ðDppÞ5;j; ðDpcÞ4;j ¼ �ðDppÞ4;j. ð38Þ
For a Neumann boundary condition, op/on = 0, that implies o(DP)/on = 0, with n the outward normal on the
boundary. Implementation of Neumann boundary conditions require significant bookkeeping. It was found,
however, that application of modified Dirichlet–type boundary conditions for the iterations with the Poisson
equation is sufficiently accurate. The unknown values occurring from the discretization of the directional
derivative, are obtained, as for the Dirichlet case, from the associated values computed by the previous iter-
ation. For example a Neumann condition (o(Dp)/ox)3+1/2,j = 0, for j = 1, . . . , J, is imposed numerically by
setting
ðDpÞ6;j ¼ ðDpÞ1;j; ðDpÞ5;j ¼ ðDpÞ2;j; ðDpÞ4;j ¼ ðDpÞ3;j. ð39Þ
The pressure correction DPp of the previous iteration now satisfies (39), and the pressure correction DPc of the
current iteration is obtained by the following Dirichlet condition
ðDpcÞ6;j ¼ ðDppÞ6;j; ðDpcÞ5;j ¼ ðDppÞ5;j; ðDpcÞ4;j ¼ ðDppÞ4;j. ð40Þ
5.2.3. Narrow stencil, fourth-order accurate Poisson update

In this section an alternative approach is used to derive the discrete Poisson-type equation. Considering the
semidiscrete (discrete only in time) form of the momentum equations (2) and using the divergence free condi-
tion on the pressure points of the staggered grid obtain an equation at pressure points. Using the continuity
equation, this equation is reduced to a Poisson-type equation for pressure correction. This Poisson-type equa-
tion is then discretized with a fourth-order accurate method. This approach results into a narrower stencil for
the discrete Poisson-type equation.

Consider the momentum equations (2) written in a compact form, analogous to (18), as
duðtÞ
dt

� �
¼ �rp þ Aðu; tÞ. ð41Þ
Regarding the above equations as a system of ordinary differential equations, we discretize in time using the
fourth-order Runge–Kutta method. Let un;‘

old be the discrete in time (but continuous in space) solution of (41)
obtained from the ‘th stage of the Runge–Kutta method. Set also pn;‘

old ¼ pn;‘�1, where pn,‘�1 is the discrete in
time pressure from the previous intermediate stage. The corrected pressure at the ‘th stage is
pn;‘
new ¼ pn;‘

old þ Dp.
An updated velocity un;‘
new is defined by
un;‘
new ¼ un þ a‘;‘�1Dtð�rpn;‘

new þ Aðun;‘
old; tÞÞ; ð42Þ
which is equivalent to
un;‘
new ¼ un;‘

old � a‘;‘�1DtrðDpÞ.

Application of the continuity equation (1) to un;‘

new implies that at the centers of the cells Ci,j, i = 1, . . . , I,
j = 1, . . . , J,



N.A. Kampanis, J.A. Ekaterinaris / Journal of Computational Physics 215 (2006) 589–613 601
r � un;‘
new þ

n
r

un;‘
new ¼ 0. ð43Þ
Substituting (42) in (43) obtain the following Poisson-type equation, valid at the cell centers, for i = 1, . . . , I,
j = 1, . . . , J:
o2ðDpÞ
ox2

� �
i;j

þ o2ðDpÞ
oy2

� �
i;j

þ n
ri�1

2

oðDpÞ
oy

� �
i;j

¼ 1

a‘;‘�1Dt
ðr � un;‘

oldÞi;j þ
n

ri�1
2

ðun;‘
oldÞi;j

" #
. ð44Þ
Second-order derivatives at the left-hand side of (44) are approximated to fourth-order accuracy using (5),
which has a five-points wide stencil. The resulting discrete Poisson equation has a nine-points wide stencil,
the pressure point plus four points from each direction. The values of un;‘

old and its divergence at the cell centers
appearing at the right-hand side of (44), are computed using (3) and (6), respectively. These values on the stag-
gered grid are known from the previous iteration.

The Neumann boundary condition for this stencil, in analogy with (40), is applied as
ðDpcÞ2;j ¼ ðDppÞ5;j; ðDpcÞ3;j ¼ ðDppÞ4;j.
The homogeneous Dirichlet boundary condition is as
ðDpcÞ2;j ¼ �ðDppÞ5;j; ðDpcÞ3;j ¼ �ðDppÞ4;j.
The stencil constructed by the discretization of (44) is more efficient than that of (34), since it involves fewer
points and requires fewer operations. It is also more robust and numerical experiments demonstrated that the
same solution is obtained from (34) and (44).
5.3. The GMRES method

Let I and J be the maximum values attained by the indices i and j, respectively. Then, the linear systems
defined by (34), or (44), have a block matrix structure, with J · J blocks, each of dimension I · I.

The matrix associated with (34) has a seven diagonal block structure. The diagonal blocks have seven diag-
onals each, while the off-diagonal blocks are diagonal. The matrix associated with (44) has a five diagonal
block structure, with diagonal blocks of five diagonals, and off-diagonal blocks are diagonal.

For the solution of these linear systems a preconditioned GMRES method [33] is used. The algorithm uses
reverse communication for the definition of matrix–vector multiplications by the user according to the storage
mode employed. Presently, the compressed sparse row (CSR) storage [32] is used. For the preconditioning, the
ILUT preconditioner, based on an incomplete LU factorization with a dual truncation mechanism, is applied.
Truncation is performed by dropping any elements in L and U, smaller in absolute value than some tolerance,
relative to the absolute value of diagonal elements in U. A fill-in parameter control keeps the maximum num-
ber of elements in each column and row, to be kept according to their magnitude.
6. Numerical results

In this section tests of the proposed high-order method are carried out for simple, steady as well as time-
dependent flow problems with exact solutions. These tests include characteristic flow cases such as cavity and
pipe flow. The numerical solutions obtained compare very well with the analytic solution. Furthermore, high
order of accuracy is achieved, as is demonstrated by the reduction of error with grid refinement. These results
were obtained by both the second- and fourth-order methods without using any upwind. Fourth-order accu-
racy is obtained either by using the explicit or the compact fourth-order differencing scheme. The incompress-
ibility constraint is enforced either by the local pressure correction or the Poisson-type equation method. In
order to retain high-order accuracy in time and avoid nonlinear instabilities in the numerical experiments we
perform the computations with CFL numbers below the stability limit of the Runge–Kutta method. It was
found that the divergence free condition on the discrete level is enforced to machine accuracy (less than
10�16) for all methods.
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6.1. Circular pipe flow

The first example, used to validate the proposed fourth-order accurate method but not shown here, is the
computation of the flow in a circular pipe driven by a constant pressure gradient. The pipe has a length L = 10
units and a radius R = 1. The radial direction r is taken along the x-axis. The y-axis, which is the axis of sym-
metry, is also the vertical left boundary where u = ov/on = op/on = 0 holds. On the right vertical boundary
placed at r = 1, u = v = op/on = 0 are used as boundary conditions. At the inflow and outflow extrapolated
conditions for u and v are used while the pressure is taken as pin = 2 and pout = 1, respectively. The axial veloc-
ities obtained by the fourth- and second-order methods on a series of grids with 21 · 91, 31 · 136, 41 · 181 and
81 · 361 points, were compared with the exact solution v(r) = Re(pin � pout)(R

2 � r2)/(4L). The steady state
numerical solutions were obtained by iterating the numerical solution up to T = 15 time units. The results
obtained from both methods practically coincided and their deviation from the exact solution was negligible.
Numerical solutions obtained by all variants of the fourth-order method proposed, i.e. using compact schemes
or explicit fourth-order finite-difference formulas to discretize the viscous and diffusive terms and Poisson-type
pressure equations or cell-based pressure corrections for imposing incompressibility, also coincided.

6.2. Driven cavity flow

A classical steady-state flow problem with well defined boundary conditions is the unit square driven-cavity
flow. The pressure for all walls is obtained by assuming zero normal pressure gradient op/on = 0. Non slip
condition is imposed for all walls except for the top wall where u = 1 and v = 0. This problem is often used
[15,1] to demonstrate the accuracy and efficiency of numerical methods for incompressible flows. Numerical
solutions for the driven-cavity flow were obtained at different Reynolds numbers. The boundary conditions
were discretized to fourth-order accuracy, by appropriately matching the staggered grid functional values
within the three-cells wide fictitious layer. Good asymptotic convergence was not achieved for very coarse
meshes due to the poor resolution of the near wall flow. Well converged numerical solutions were produced
by the high-order method at a Reynolds number Re = 100 on a series of meshes. These meshes are an
111 · 111, an 121 · 121, an 131 · 131, an 141 · 141, an 151 · 151, an 161 · 161, an 181 · 181, an 191 · 191
an 201 · 201, and an 221 · 221 point uniform grids. For comparison, numerical solutions were also obtained
by the second-order accurate method of Ref. [13], on the same grids. In addition, a numerical solution was
computed by the method of Ref. [13] on a very fine 301 · 301 point uniform grid. All the computations were
performed using double precision.

It was assumed that the 301 · 301 point very fine grid solution obtained by the second-order accurate
method of Ref. [13], achieves a negligible error to the exact solution in the L2 norm. Therefore, this numerical
solution was used to make a posteriori error estimates to establish the fourth-order accuracy of the proposed
method. Computed solutions are compared with the numerical solution of Ref. [9] that is used widely for com-
parisons in the literature. For all grids, the divergence on the discrete level was enforced to machine zero
(approximately 10�16) and did not change with grid refinement.

A comparison of the u-velocities computed by the fourth-order accurate method on the 201 · 201 and
221 · 221 point grids with those computed by the second-order accurate method on the 221 · 221 and
301 · 301 point grids and the results of Ref. [9] is shown in Fig. 2. An analogous comparison for the computed
v-velocities is shown in Fig. 3. Good agreement is obtained for the fourth-order accurate solution with the
solution of Ref. [9]. Second-order accurate solutions on finer grids show larger deviations than the fourth-
order accurate solutions on coarser grids. The velocity field and the contours of the velocity magnitudeffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p

computed by the fourth-order accurate method on the 221 · 221 point grid are shown in Fig. 4.
The numerical solutions shown in Figs. 2–4 were obtained after integrating up to T = 10 time units. Since

no difference was found by integrating up to T = 15 or T = 20 time units, the steady-state solution was safely
reached for T = 10 time units. This is further confirmed by Fig. 5, where the L2 norm of the residual R (see Eq.
(18)) of the numerical solutions computed with the 221 · 221 point grid (time step equal to 1/2500) and the
fourth- and second-order accurate methods, and the numerical solution computed with the 301 · 301 point
grid (time step 1/4500) and the second-order accurate method are shown to level off (i.e. reduce to practically
zero, that is less than 10�10) after integrating up even T = 5 time units. The time step for the 221 · 221 point
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grid computations with the fourth and second was close to the CFL stability limit of the Runge–Kutta time
marching method.

For the cavity flow, a posteriori estimations of the spatial discretization error using the L2 norm of the error
are shown in Fig. 6. A very fine grid solution computed on a 301 · 301 point grid by the established second-order
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Fig. 4. Velocity field and velocity magnitude contours computed by the fourth-order method on the 221 · 221 point grid; driven cavity
flow (Re = 100).
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accurate method of Ref. [13] is used as reference solution uR. It is assumed that this reference solution has neg-
ligible error compared to the ‘exact’ solution uE in the L2 norm, i.e. kuR � uEkL2 is very small. The L2 error norms
of Fig. 6 are defined as kuN � uRkL2 , where uN denotes the fourth-order accurate solutions obtained on the N · N
point grids with N = 111, 121, 131, 141, 151, 161, 181, 191, 201, and 221. The triangular inequality kuN � uEkL2 6

kuN � uRkL2 þ kuR � uEkL2 ; shows that a good approximation of the error kuN � uEkL2 of the uN solutions can be
obtained from kuN � uRkL2 . Therefore, grid convergence of the numerical solution of Fig. 6 is demonstrated with
the decay of the L2 norm kuN � uRkL2 . It is evident that the observed order of accuracy of the proposed fourth-
order method is fair.

The numerical solutions obtained by all variants of the proposed fourth-order accurate in space and time
method coincide. For the Reynolds number Re = 100, the variants using the local pressure correction update
required less computing time than those based on the solution of the Poisson-type equation for the pressure
correction. Enforcement of the incompressibility condition to machine accuracy (i.e. $ Æ u � 10�16) was
achieved for all cases. The number of iterations of the local pressure correction per time step of the
Runge–Kutta method, for the 121 · 121 point grid solution for example, varies as follows: For the initial time
iterations with the Runge–Kutta method, where the transients are removed, the number of correction sweeps
within each stage is different. For the second and third stages is about 400 and for the fourth stage is about 50.
Once the solution passes through the transient stage the number of correction sweeps diminishes considerably.
For the second and third stages of the Runge–Kutta method the iterations are about 100 and for the fourth
stage about 15. Just before the steady-stage regime, the number of correction sweeps for the second and third
stages of the Runge–Kutta method is between 10 and 20 and for the fourth stage to less than 10. When the
steady-state is reached the number of iterations required drops to about 10 for all stages. On the other hand,
the number of correction sweeps per time step, required by the Poisson-equation pressure correction method
to obtain the 121 · 121 point grid solution, is smaller compared to that for the local pressure correction. How-
ever, since the computing time for solving numerically the Poisson-type equation is larger, the total computing
time required by the local pressure correction method to enforce incompressibility is smaller compared to that
of the Poisson-equation global pressure correction method. The same comparative behavior concerning the
number of iterations per time step was observed for Re = 100, for finer or coarser grids.

The observation that the number of iterations for the Poisson-equation pressure correction method was in
all cases less than the number of iterations required by the local pressure correction method prompted further
experiments at higher Reynolds numbers. Therefore, numerical solutions were obtained for Re = 500, 1000,
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2000 and 10,000 on a 101 · 101 and a 151 · 151 point grids. The important outcome of this study was that
while the Reynolds number increases, the ratio of the number of iterations of the Poisson-equation pressure
correction method to that of the local pressure correction method, required to enforce incompressibility at
each time step of the Runge–Kutta method, decreases. As a result, it appears that with the progressive increase
of the Reynolds number, use of the Poisson-equation global pressure correction method becomes more attrac-
tive alternative in terms of efficiency. This is an encouraging conclusion for applications to 3D high Reynolds
number flows, where computing time becomes an important issue.

6.3. Oseen vortex decay

The decay of an ideal vortex is an unsteady flow problem with an exact solution [26]. This problem is of
interest to numerical simulations of trailing vortices, (LES), and (DES) simulations. The initial velocity dis-
tribution of the Oseen vortex is given by
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vhðr; t ¼ 0Þ ¼ C
2pr

; ð45Þ
where C defines the strength of the vortex and r is the distance from the origin, and the initial pressure distri-
bution is p = const. This vortex decays under the action of viscous forces and the velocity at time t is given by
the following exact solution of Ref. [26]:
vhðr; tÞ ¼
C

2pr
1� exp � r2Re

4t

� �� �
. ð46Þ
The time-dependent flow with initial condition given by (45) was computed for C = 5. In Figs. 7 and 8, the
numerical solutions obtained on equally spaced, Cartesian grids with 51 · 51 and 101 · 101 points, respec-
tively, using the fourth- and the second-order accurate methods were compared with the exact solution (46)
for time T = 4. For both figures, a small time step of 1/1000, well below the CFL stability limit of the
Runge–Kutta method, was used to ensure that time-accuracy errors are negligible compared to spatial discret-
ization errors. Both figures show the superior performance of the fourth-order accurate method compared to
that of the second-order accurate method.

A comparison of the L2 norm of the spatial error at T = 1 obtained by the fourth- and second-order accurate
methods is shown in Fig. 9. It is evident that the fourth-order accurate method yields the expected fourth-order
spatial accuracy. A comparison of the L2 norm of the temporal error at T = 1 obtained by the fourth- and second-
order accurate methods is shown in Fig. 10. The fourth-order method again yields the expected fourth-order
temporal accuracy. In Fig. 11 numerical results obtained by the fourth- and second-order accurate methods com-
puted on a 1001 · 1001 point grid (and a time step of 1/1000) for a very large Reynolds number (Re = 1010) are
compared with the exact solution.

In Fig. 12, the kinetic energy defined as EðtÞ ¼
R

D u2ðr; h; tÞr dr dh is plotted for Re = 1, for the exact solu-
tion and the fourth-order accurate numerical solution computed on the 101 · 101 point grid using the explicit
finite-differences of Section 3.2.1 to discretize in space the momentum equations. The kinetic energy is plotted
in the same figure for the inviscid limit Re = 1010, for the exact solution and the fourth-order accurate numer-
ical solution on the 1001 · 1001 point grid. In both cases, the energy conservation of the proposed fourth-
order accurate numerical method is evident. Fourth-order accurate numerical solutions computed on the same
grid and the compact schemes of Section 3.2.2 for the space discretization, exhibited the same behavior. For
the high Reynolds number solutions the numerical mesh is shifted to avoid having a grid point at the origin
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where the velocity is very large (see Eq. (46)). For this reason, the principal value of the integral is computed
after excluding a circle with center the origin and radius the half mesh length.

All the results were computed using double precision. Note that all numerical solutions obtained by all vari-
ants of the fourth-order accurate method proposed coincided.

6.4. Stokes oscillating plate

The flow over an infinite oscillating plate (Stokes solution) is an unsteady incompressible flow problem with
an exact solution [26]. The flow over the plate is established after the plate starts an oscillatory motion (on the
plane y = 0) with speed
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uðx; 0; tÞ ¼ u0 sin Xt. ð47Þ

The exact solution gives the time varying velocity as
uðx; y; tÞ ¼ exp �y

ffiffiffiffiffiffiffiffiffi
XRe

2

r !
sin Xt � y

ffiffiffiffiffiffiffiffiffi
XRe

2

r !
. ð48Þ
For the computations, periodic boundary conditions were imposed in the streamwise direction, since the solu-
tion (48) is independent of x. On the plate v = op/on = 0 was considered. The following values of the param-
eters u0 = 1 and X = 2p are used. The resulting oscillation period is T = 1. At the top boundary of the domain,
which was located eight units away from the solid wall, the flow velocity and pressure were taken equal to
zero. For this computation, a series of grids with 21, 31, 41, 51, 71, 91 and 101 points in the normal to the
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solid wall direction and 6 points in the streamwise direction were used. Numerical solutions were computed by
the fourth- and second-order accurate methods after iterating for 30 periods until a time periodic solution was
achieved.

Comparisons of the computed solution, from both numerical methods, (at T = 1/4 after a time periodic
solution was achieved) with the exact solution (48), are shown in Fig. 13 for the 6 · 101 point grid. The agree-
ment with the exact solution is very good and the better resolution of the fourth-order method is evident. The
variation of the L2 norm of the error obtained by both methods with grid refinement are plotted in Fig. 14. It
is evident that grid convergence is achieved and the proposed fourth-order accurate method retains fourth
order of accuracy. It was found that the variant of the fourth-order method with compact schemes for the
u
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evaluation of the derivatives, requires a slightly smaller time step to converge to the same numerical solution.
All the results were obtained using double precision arithmetic.

6.5. Pulsatile pipe flow

Flow in a circular pipe established by an oscillating pressure gradient is an unsteady incompressible flow
problem with an exact solution [35]. In this case p(r, 0, t) = pout + Lcosxt, with pout a given constant and
L the length of the pipe. The exact solution [20] for the spatial and temporal variation of the axial velocity
is given by
vðr; tÞ ¼ R
R2

iRea2
1� J 0ðafi3=2Þ

J 0ðai3=2Þ

� �
eixt

� �
; ð49Þ
where f = r/R, a ¼ R
ffiffiffiffiffiffiffiffiffi
xRe
p

is the Womersley number, R is the radius of the circular pipe, R denotes the real
part, and J0 is the Bessel function of the first kind of order zero and complex argument. Pulsatile flow in used
in physiological flows to describe blood flow in arteries [20].

For the computations x = 4 (a = 6.3245) was selected. For this case the unsteady motion has a period
T = p/2. Furthermore, values of pout = 1, R = 1 and L = 5 were used. Time periodic response of the numerical
solutions was obtained after iterating for 10 periods (t = 5p). Numerical solutions obtained by the fourth- and
the second-order accurate methods on a series of grids with 21 · 51, 31 · 76 and 41 · 101 points, are compared
at T = p/4, after time-periodic response was reached. A comparison of the fourth- and the second-order accu-
rate solutions for the 41 · 101 point grid, with the exact solution of (49), is shown in Fig. 15. Fig. 16 shows
that the amplitude and phase errors, over one period, of the fourth-order solution are negligible. In this figure
only one half of the period is shown because the other half is a repetition.

For the pulsatile flow calculations the effect of the approximate inflow and outflow boundary data speci-
fication degrades the overall accuracy of the numerical solution. As a result grid convergence in the L2 norm
of the error was not achieved because the order of accuracy of the numerical solution degrades due to time lag
of the extrapolation at the inflow and outflow from the interior. However, it was observed that the fourth-
order method simply achieves smaller L2 error levels compared to the second-order solution. All variants
of the fourth-order method showed the same convergence behavior. All results were obtained using double
precision arithmetic.
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7. Conclusions

A fourth-order accurate method for the numerical solution of the incompressible Navier–Stokes equations
has been developed. The proposed method uses explicit or compact fourth-order accurate schemes for the dis-
cretization of the convective and viscous fluxes. Incompressibility is imposed iteratively by two methods. The



612 N.A. Kampanis, J.A. Ekaterinaris / Journal of Computational Physics 215 (2006) 589–613
first method computes a pressure update by consecutive pressure corrections for all cells followed by local
velocity corrections. The second method solves a global Poisson-type equation to compute pressure updates
for all cells simultaneously and recomputes the velocity globally. In both cases, the derivatives in the continu-
ity equation that is used for pressure corrections, are discretized to fourth-order accuracy. The proposed
fourth-order method is compared with exact solutions in several incompressible fluid flow problems. These
problems include computations of steady-state flows such as circular pipe and a driven cavity flows. Further-
more, unsteady flow solutions for the decay of the Oseen vortex, the flow above an oscillating plate and the
pulsatile flow in a pipe are computed. The comparisons show that the fourth-order accurate method performs
better than the second-order accurate method in all cases. Furthermore, the proposed method achieves fourth-
order accuracy in space and time. The local pressure correction method performs better (i.e. enforces the
incompressibility condition to machine zero in less computational time) for low Reynolds number flows. How-
ever, it appears that the Poisson equation, global pressure correction method becomes an attractive alternative
as the Reynolds number became larger.
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